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Abstract

Flood risk models provide important information for disaster planning

through estimating flood damage to exposed assets, such as houses. At large

scales, computational constraints or data coarseness often lead modelers to

aggregate asset data using a single statistic (e.g., the mean) prior to applying

non-linear damage functions. This practice of aggregating inputs to nonlinear

functions introduces error and is known as Jensen's inequality; however, the

impact of this practice on flood risk models has so far not been investigated.

With a Germany-wide approach, we isolate and compute the error resulting

from aggregating four typical concave damage functions under 12 scenarios for

flood magnitude and aggregation size. In line with Jensen's 1906 proof, all sce-

narios result in an overestimate, with the most extreme scenario of a 1 km

aggregation for the 500-year flood risk map yielding a country-wide average

bias of 1.19. Further, we show this bias varies across regions, with one region

yielding a bias of 1.58 for this scenario. This work applies Jensen's 1906 proof

in a new context to demonstrate that all flood damage models with concave

functions will introduce a positive bias when aggregating and that this bias

can be significant.
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1 | INTRODUCTION

With the increase in flood-related disaster damages, the
expansion of computation power, and the availability of
global data, development and application of meso- and
macroscale flood risk models have increased in the past
decade (Ward et al., 2020). These models are composed of
a series of sub-models for the flood hazard, exposure
of assets, and vulnerability to flooding, where vulnerabil-
ity modeling, the last step in the chain, is generally found
to be the most uncertain component in micro- and

mesoscale models (de Moel & Aerts, 2011; Jongman
et al., 2012). These findings are supported by work com-
paring modeled damages to those observed during flood
events, where large discrepancies are often found
between different models and actual observations
(Jongman et al., 2012; McGrath et al., 2015; Molinari
et al., 2020). Further challenges we elaborate below are
introduced when such models are transferred to the mac-
roscale, where many exposed assets are aggregated
through averaging into a single unit before vulnerability
models are applied (Hall et al., 2005; Sairam et al., 2021;
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Ward et al., 2020). This process collapses heterogeneities,
for instance in the flood depth, within the aggregated
unit and generally results in overestimation of the total
flood damage (Bryant et al., 2023).

In a flood vulnerability model, flood damage functions
(f) provide a mathematical relationship between hazard
and vulnerability variables (e.g., flood depth) and the esti-
mated damages from flooding (e.g., building repair costs)
for an individual asset (White, 1945). The most basic func-
tions directly relate flood depth to damage—so-called
depth-damage curves widely attributed to White (1945).
Damage functions are typically categorized based on the
model's focus or objective, such as the sector (residential
vs. nonresidential), tangibility (tangible vs. intangible), dam-
age mechanism (indirect vs. direct), and uncertainty treat-
ment (deterministic vs. probabilistic) (Merz et al., 2010).
Further classification considers function structure such as
continuity (discrete vs. continuous) and for tangible eco-
nomic functions the asset total value relation (relative
vs. absolute) (Merz et al., 2010). Gerl et al. (2016) provide a
comprehensive review of 47 flood damage functions, the
majority of which are deterministic (96%), multi-variable
(88%), and express loss relative to the total value of the asset
(56%). To provide a standardized library of these functions,
each was standardized to a common set of indicator vari-
ables, while unique indicators were left as default values.
After this standardization, Gerl et al. (2016) found signifi-
cant heterogeneity in function shape and magnitude.

Aggregation and scaling issues in flood damage
models have only recently been considered systematically.
Sieg et al. (2019) developed a stochastic framework to
seamlessly compute damages at different spatial scales
with consistent uncertainty accumulation. For this, a
gamma probability distribution was fit to hazard, vulner-
ability, and exposure variables using a mix of survey data,
statistics data, and simulated water levels. From these
distributions, 300 samples were drawn to populate assets
within the damage model. Results were then aggregated
(e.g., total damages within municipalities) together with
the accumulated uncertainty. Total damage was then
compared to that of an earlier study with 100 m gridded
asset aggregation (Seifert et al., 2010) to show the aggre-
gated study overestimated. Using a more traditional
approach, Pollack et al. (2022) developed models for
800,000 single-family dwellings and eight flood scenarios
from the Fathom US Flood Map product. When only
building attributes were aggregated, annualized damage
was slightly underestimated (�10%), but when hazard
variables were also aggregated, there was a large overesti-
mate (+366%). Focusing on flood hazard grids, Bryant
et al. (2023) showed mathematically that common aggre-
gation schemes will always positively overestimate inun-
dation areas. We are not aware of any studies specifically

investigating the role of aggregation on non-linear dam-
age functions or Jensen's inequality.

The objective of this paper is to explain, demonstrate,
and quantify the effects of spatially aggregating non-
linear damage functions. In other words, we seek to
answer the question of how significant Jensen's inequal-
ity is for flood damage models.

2 | JENSEN'S INEQUALITY

Scaling and averaging issues are not unique to flood dam-
age models. Many fields find it convenient (or even nec-
essary) to simplify the system under study by averaging
or aggregating some variable or computational unit
(Denny, 2017). However, the assumption that averaging
does not affect system response is incorrect for most real-
world system; a conundrum, widely called “Jensen's
inequality” (Jensen, 1906) or “the fallacy of the average”
which can be formalized as:

g xð Þ≠ g xð Þ, ð1Þ

where g is a non-linear function and x is an independent
variable. Applied to flood vulnerability models, which are
generally nonlinear (Gerl et al., 2016), Equation 1 implies
that aggregating or averaging assets (e.g., buildings) intro-
duces errors when those aggregate values are used as
inputs into a vulnerability model. This difference between
modeling entities on an individual basis versus in aggre-
gate is called Jensen's gap (see Figure 1). Jensen (1906)
proved that the magnitude and direction of this gap is
related to the variance of the independent variable σ2x and
the local shape of the function g00 xð Þ. Convex functions
result in positive gaps or an underestimating aggregate
model g xð Þ> g xð Þ while concave functions result in nega-
tive gaps or an overestimating aggregate model
g xð Þ< g xð Þ. The limits of the gap size can only be deter-
mined for certain types of problems (Liao & Berg, 2018;
Walker, 2014), such as when x follows a mean centered
distribution (Gao et al., 2017), or when g(x) has a Taylor
expansion (Abramovich & Persson, 2016), but are difficult
to determine for other classes of problems. In summary,
any model containing non-linear functions and variance
within the independent variable will introduce some bias
when measurements of that variable are aggregated.

3 | METHODS

To evaluate the sensitivity of flood damage models to Jen-
sen's inequality, a simulation experiment is used to
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compare models which differ only in the level of asset
aggregation. For this, three different grid sizes are used to
construct aggregate models for four direct, tangible,
flood-damage functions resulting in a total of 12 scenarios
or experiments (3 grid sizes � 4 damage functions).
These experiments generate a large spatial dataset of
exposed flood depths, relative losses, and total losses
(using homogenous replacement values) for the 12 scenar-
ios from which our analysis explores the significance of
Jensen's gap on flood damage models.

For this study, we focus on direct tangible economic
functions for estimating the relative loss to residential
buildings from flood depth or water surface height
(WSH) in Germany. While Jensen's gap is a mathematical
phenomenon, and therefore indifferent to damage func-
tion categories like tangibility (tangible vs. intangible) or
damage mechanism (indirect vs. direct), we focus on
direct tangible economic functions as this category is the
most common (Merz et al., 2010) and has the longest his-
tory of application (White, 1945) and therefore provides
the most clear and relevant examples for demonstrating
Jensen's gap. From the standardized function database of
Gerl et al. (2016), three such flood damage functions were
obtained. A fourth more recent function developed from
private-household surveys in Germany (Wagenaar
et al., 2018) was also preprocessed in a similar manner
and included. The complete collection of the database
from Gerl et al. (2016) is shown in Figure S4. All of these
are in tabular format and have been simplified as univari-
ate functions of depth by selecting default variable values
for the multivariate functions (FLEMO and BN-

FLEMOps). In this form, these functions can be imple-
mented in a damage or vulnerability model as:

TL¼
Xn
j

RLj
�Vj, ð2Þ

where TL is the total loss or damage of the flood event,
Vj is the replacement value of asset j, and RLj is the rela-
tive loss defined as:

RLj ¼ f WSHj
� �

, ð3Þ

where f is the univariate damage function of the flood
depth or water surface height (WSH) at asset j. The two
modern and two legacy damage functions selected for
this study are summarized in Table 1. These were devel-
oped from post-flooding records or surveys of damages to
individual buildings in Germany, except for IKSE for
which the documentation is unclear. The legacy damage
functions, IKSE and MURL, were intended as meso-scale
damage functions, to be applied on the spatial basis of
land use areas; however, how the transformation from
per-building records was performed was not documented.
The more modern functions, FLEMO and BN-FLEMOps,
were intended as micro-scale damage functions, to be
applied on the spatial basis of buildings or structures.
When flood damage models are formulated for the
macro-scale, it is common to group many buildings into a
single computational unit, that is, aggregate many

WSH

W
SH

RL

FIGURE 1 Illustrative example of Jensen's gap applied to an idealized flood damage function. (a) An example of three base or child

assets i (e.g., buildings) which are to be aggregated into a single parent asset j (not shown). The child assets (i) are exposed to the flood

depths plotted on the x-axis of panel (b), the average of which (WSHi) is taken as the exposure of the aggregate asset ( j) (black-dashed

vertical line). (b) The relative losses resulting from the three child assets and the single aggregate asset on the y-axis. Finally, the mean of the

child asset losses (RLi; horizontal black-dashed line) is compared to the loss of the aggregate asset to demonstrate and quantify Jensen's gap.

See later text for a discussion of the envelope.
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underlying child-assets i into a single parent-asset j (see
Figure 1 for illustration). Importantly, while this aggrega-
tion implies some transformation of the independent var-
iable WSH (from i to j), neither in practice nor in our
study is a similar transformation applied to the damage
function f. It is this mismatch, or the application of child-
asset-derived damage functions to aggregate assets, which
is the focus of our study.

To exclude other artifacts of aggregation that may
impact model behavior (e.g., raster aggregation, exposure
sampling), we employ an experimental damage model
designed to estimate aggregation error, rather than an
applied model designed to estimate flood damage. Our
experimental model has two key differences from a more
traditional applied model. First, to eliminate any con-
founding influences from asset categorization, a single
damage function is applied in each scenario to all assets,
rather than categorizing and applying functions heteroge-
neously to assets based on some exposure variable
(e.g., building use) as is typically done in applied models.
Second, the experimental model focuses on relative losses
rather than total losses, thereby eliminating the influence
of heterogeneous building replacement values; however,
a proxy for total loss using homogeneous replacement
values is also provided.

To construct the non-aggregated base-asset (i) control
model, building centroid points are extracted Germany-
wide from OSM (OpenStreetMap contributors, 2015) for
building footprints with an area >50 m2. Flood depth
grids are taken from Fathom Global Flood Map 3.0 prod-
uct with 1 arcsecond (30 m) resolution and four fluvial
undefended return period scenarios (10, 50, 100, and
500 years) (Fathom, 2023). Relative losses are computed
from each of the selected damage functions using linear
interpolation for explicitly tabulated WSH–RL pairs, and
the maximum RL for exceeding WSH values. All
functions are applied on the same datum as the hazard
scenario (i.e., it is assumed that the functions start at the
terrain surface of the hazard model).

To construct the aggregate ( j) models, a square grid is
generated for the full Germany-wide domain for three

grid sizes: 60, 240, and 1020 m. These three sets of grid
polygons are then spatially joined to the building cen-
troids to create a lookup table such that each building is
assigned a single grid cell in each of the three grid sizes
(i.e., one parent grid cell is assigned to many child build-
ings). Aggregate assets with no child building exposure,
that is, where no buildings are flooded by the most
extreme scenario, are then purged from the table yielding
varying spatial extents and total building count between
the different grid sizes. This lookup table is then used to
compute the aggregated asset statistics like the number of
buildings or the aggregate flood depth (WSHj).

To obtain the flood depth on each aggregated asset
(WSHj), a few options are available: (1) a zonal statistic
(e.g., mean or mode) of raster depth values within each
cell; (2) the raster depth value sampled at the grid poly-
gon centroid; or (3) a statistic of child building depth
values within each cell. The first option has been used
by some studies; however, Bryant et al. (2023) have
shown this introduces some bias that would confound
our study of function aggregation—especially in those
regions with buildings. Similarly, the second option of
centroid sampling also introduces substantial bias as
assets and water depths are not evenly distributed across
the grid cell. For example, some of our early experi-
ments suggested this centroid sampling generated more
bias than the actual aggregation or Jensen's gap. Consid-
ering this, we adopt the third option and implement the
child depths mean (mean of depths at buildings within
an aggregate asset) as the independent variable for each
aggregate asset. Obviously, this is impractical for most
aggregated applied-models as it requires the underlying
building location data; however, this aggregation strat-
egy is the only that facilitates isolating the effects of
function aggregation and was therefore selected for our
study.

The complete data processing pipeline (Bryant, 2023)
is written primarily in python and uses PostGIS for most
data operations (PostGIS Project Steering Committee,
2018) and Whitebox Tools for raster sampling
(Lindsay, 2014).

TABLE 1 Selected flood damage functions.

Name Full name
Spatial design
basis

Envelope
(cm � %)a Reference

FLEMO Flood Loss Estimation MOdel Per-building 8978 (Thieken et al., 2008)

IKSE Internationale Kommission zum Schutz der Elbe Per-building 14,500 (Elbe, 2003)

MURL Ministerium für Umwelt, Raumordnung und
Landwirtschaft des Landes Nordrhein-Westfalen

Land use 2500 (Nordrhein-Westfalen, 2000)

BN-FLEMOps Bayesian Network Based Damage Model for the private
sector

Land use 6566 (Wagenaar et al., 2018)

aEnvelope of potential error as in Figure 1. See Figure S1 for calculation.
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4 | RESULTS AND DISCUSSION

This section presents results in a sequence similar to the
workflow of a classical damage model. First, we start
with the child depth statistics which provide the inde-
pendent variable for the damage functions, then we
investigate relative-loss effects by intersecting these
depths with the selected damage functions, and finally a
brief analysis of potential aggregation errors in total-loss
is presented.

4.1 | Depth variance

Considering the variance (σ2) of the independent variable
(WSHi) is directly related to Jensen's inequality
(Denny, 2017), we expect loss calculations on aggregate
assets with non-negligible child depths variance to yield
some error (when compared with the loss calculated from
the child asset depths directly). To show this variance
within our aggregations, Figure 2 presents the statistics
for the child depths for the four hazard scenarios (rows)

FIGURE 2 Germany-wide child depths mean and standard deviation for three levels of grid-aggregation and four hazard scenarios.

Histograms show the distribution of their respective axis. Text in each panel provides the mean (σ) and 0.75 quantiles (Q0:75 σ½ �) of the child
depths standard deviations. The mean of the child depths means (WSHj), and the total counts of buildings (ni) and aggregated assets (nj) are

also provided. Only those aggregate assets with at least two child assets are included.

BRYANT ET AL. 5 of 12
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and three aggregation sizes (columns). Focusing first on
the child asset (i) exposure counts (i.e., the total number
of buildings within the exposed domain), this plot shows
an increase with both hazard severity and grid size,
reflecting the increasing footprints of these scenario
dimensions. The aggregate ( j) exposure counts on the
other hand show a similar trend with hazard severity but
decrease in count with the larger grid sizes. Aggregated
water depths (WSHj) follow this same trend: the larger
grid sizes capture more dry assets thereby reducing
the mean.

Looking from left-to-right shows that, with one excep-
tion, variance increases with increasing grid size as
expected: the greater the number and source area of child
buildings, the more likely their depths are to vary. A sim-
ilar increasing pattern is observed looking from top-to-
bottom, where more extreme flood scenarios increase the
variance (and depths). While this is less intuitive, we
hypothesize this result is caused by the ratio of small-
steep river channels activated in the domain. The lower
magnitude events are dominated by exposure within
broad-flat floodplains while these events do not result in
exposed building in the smaller rivers where terrain gra-
dients are more severe. Regardless, Figure 2 demonstrates
that most aggregate assets have a submeter standard devi-
ation (Q0:75 σ½ �<50 cm).

Spatially, child depth variances are heterogeneous.
Figure 3 shows a map of standard deviations for the most
extreme 500-year hazard scenario. The regions of high
variance correspond to river sections with development
on both steep and flooded terrain. From this map, we
conclude that sensitivity to Jensen's inequality can differ
substantially between regions.

4.2 | Relative losses

With the pattern and magnitude of child depths demon-
strated, we now feed these into the selected damage func-
tions to compute non-aggregated and aggregated relative
losses. By comparing these, the distribution of errors can
be quantified as shown in Figure 4 for the most extreme
hazard scenario where each function is overlaid on the
mean loss computed from each child asset (RLbldg,j). In
other words, Figure 4 shows the difference between what
the aggregate model would calculate (f(WSH)) and
what a model that included individual buildings would
yield. Rather than focus on the absolute value of the com-
puted errors, which are sensitive to the study domain,
homogeneous building categorization, and application of
the legacy functions at micro-scale, Figure 4 is used to
understand error trends and behavior caused by function
shape and grid size. Examining general trends shared by

all loss functions by looking from left-to-right
(Figure 4a–c) we see both the density plot and the WSH-
binned mean line (blue dashes) show a widening gap
between per-asset losses and aggregate losses as the grid
sizes increases. This follows from Figure 2 which shows
the same trend on variance. This difference has a similar
pattern for all 12 scenarios: for aggregate depths
>200 cm, the aggregate relative loss (solid black line)
overestimates the per-asset loss (dashed blue line) sub-
stantially. This is also reflected in the differences between
the population means which show the aggregate
RLgrid,j
� �

overestimating the per-asset RLbldg,j

� �
losses for

all scenarios (with a bias up to 1.19). The extremes are
also noteworthy, where we see some aggregate losses
are more than double their child-asset mean-loss
counterpart.

Comparing across functions, Figure 4 shows those
with a greater RL range (e.g., function IKSE's RL ranges
from 0% to 40%) yield larger magnitudes of differences
and root mean square errors (RMSE) between the aggre-
gate and per-asset losses. To understand this, consider an
envelope of potential error bounded by f(x) and a line
from f(0) to f(xmax) (see Figures 1 and S1) where xmax is
1000 cm for our hazard scenarios. The greater the area of
this envelope the more sensitive the function will be to
variance in child depths values. This envelope can also be
thought of as a measure of concavity, which yields a neg-
ative Jensen's gap (Denny, 2017). Because all selected
functions are concave (downward curvature), the aggre-
gate functions all overestimate, except for a small portion
of the FLEMO function between 0 and 175 cm which is
slightly convex (upward curvature). For another example
of how curvature relates to this aggregation error,
Figure S2 provides a similar analysis but with three ideal-
ized functions that differ only in their curvature parame-
ter, showing the same dependence of error on curvature.
Figure S4 shows there is some diversity of function shape
within Gerl et al.'s (2016) database; however, most have
similar concavity and therefore we expect similar overes-
timation patterns. In summary, Jensen's gap can be sig-
nificant for a Germany-wide model under the most
extreme scenarios; however, Figure 3 suggests there may
be some local regions where the gap is more pronounced.

To demonstrate the significance of Jensen's gap for a
local region with high child depth variance, the sub-
domain around Koblenz as shown in Figure 3 (red box)
was selected for further analysis. This area is hydrauli-
cally complex, encompassing the confluence of the
Rhine, Moselle, and Lahn rivers, all confined to relatively
narrow valleys with dense development along the banks.
The mean child depths variance for this region is 1.5–4.0
times higher than the Germany-wide averages (see
Figure S3), suggesting Jensen's gap may be more severe

6 of 12 BRYANT ET AL.
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here. To illustrate this, Figure 5 shows the aggregated
and non-aggregated relative losses for a single example
function. Compared with the Germany-wide values,
RMSE more than doubles and the bias more than triples
(relative to perfect).

By implementing a Germany-wide approach, we
trade some marginal uncertainty in the absolute RL
values of each scenario for breadth and consistency
across functions. The two most significant marginal
uncertainty sources being the application of residential
functions to all buildings and the application of per-
building centroid depths (WSHi) to all functions. The first

assumes that the spatial distribution of residential and
nonresidential buildings is roughly equivalent, which
likely is untrue in some regions. The second assumes
WSHi is uniform across the footprint of the function's
spatial design basis, that is, for the per-building modern
functions WSHi is assumed uniform across each building
footprint and across each land use block for the meso-
scale legacy functions. Considering the 30 m resolution
hazard layers, uniform WSHi across land use blocks,
which are generally 100 m square, is untrue in many
regions as shown in Figure 2. For the two mesoscale leg-
acy functions, this means the RL errors reported in

FIGURE 3 Map of major rivers in Germany and standard deviations of child depths for the 500-year hazard scenario with an

aggregation grid size of 1020 m. Only those aggregate assets with at least two child assets are shown. See text for a discussion of sub-domain.

BRYANT ET AL. 7 of 12
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Figure 4 (Rows 1 and 2) have an additional application
uncertainty roughly equivalent to the 60 m computation
(Figure 4a1,a2). However, considering the magnitude of
this uncertainty is an order of magnitude less than the
errors computed for these damage functions by Thieken
et al. (2008), this application uncertainty is inconsequen-
tial to our analysis of aggregation behavior and an accept-
able tradeoff for allowing the inclusion of these well-

known damage functions in the analysis. Finally, readers
should note that even for the extreme cases computed
here, the relative loss errors from aggregation are less
than those from the initial construction or fitting of the
empirical functions themselves. For example, BN-
FLEMOps has a mean absolute error around 15% RL
(Wagenaar et al., 2018) and FLEMOps 24% RL (Thieken
et al., 2008) when comparing modeled to observed losses.

FIGURE 4 Relative losses for three grid aggregations for the 500-year fluvial undefended hazard scenario and the four selected flood

damage functions (Table 1). Child relative loss means (mean of relative loss of each building within a grid cell) RLbldg,j
� �

versus WSHj are

shown as a density scatter plot. The blue-dashed line shows the same RLbldg,j values for each aggregate asset with the mean taken again by

binning on WSH values. The black-dashed line shows the original damage function. On the right-hand-side of these panels the population

mean of losses computed from aggregate (RLgrid,j) and child relative loss mean RLbldg,j are shown. Bias is computed as RLbldg,j ⁄ RLgrid,j. Only

those aggregate assets with at least two child buildings are included.
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4.3 | Total losses

The above analysis, while useful in demonstrating and
understanding the mechanics of Jensen's inequality as it
applies to flood damage functions, has limited applicabil-
ity to damage models due to the lack of replacement
values (Vj; see Equation 2). For example, densely devel-
oped regions (e.g., cities) may have different exposure or
hazard patterns than less developed regions (e.g., rural
areas). These density-dependent effects are obfuscated
when the aggregate asset RL is simply compared to the
child RL mean (i.e., all aggregate assets are treated
equally regardless of their child building counts) as in the
previous section. As a proxy to quantify aggregation
errors with density dependent effects, we extend the
above analysis by including all assets and multiplying
the relative losses calculated for the aggregate asset by its
building count (Bj) as shown in Figure 6.

Looking from left to right again, Figure 6 shows the
same increase in bias and RMSE with grid size as for
the relative loss values in Figure 4, as well as the same
relative magnitudes between functions. However, the
total bias increases for 6 of the 12 cases with two cases
decreasing slightly compared to the relative loss values.
This suggests some, generally intensifying, density effects
on Jensen's gap in flood damage models. In other words,
aggregate assets with more children (e.g., cities) are more
sensitive to Jensen's gap than those with fewer children
(e.g., rural areas).

This asset-density study-model serves as a proxy for
the sensitivity of applied damage models to nonlinear
function aggregation errors or Jensen's inequality. In fact,
this asset-density study model is simply a damage model
with homogeneous replacement values (Vj), that is,
where each building in the model, regardless of size,
costs the same to replace. Because this assumption is
false, our asset-density study model is incapable of

yielding total losses; however, when used instead to com-
pare results between scenarios (aggregated vs. non-
aggregated in our case) the model can provide a reason-
able estimate of the bias of equivalently aggregated dam-
age models. For regions where the variance of
replacement values is high and correlated with the haz-
ard within an aggregated asset (e.g., large expensive
homes along the river), the estimate provided here is less
applicable.

To capture behaviors that emerge at the large scales
under which aggregation is commonly implemented, our
study domain includes all of Germany. Because of this
choice, the resolution of our hazard scenarios is limited
to 30 m as this is the highest resolution model at this
scale, we are aware of. This coarseness relative to the size
of buildings may temper the variance of child depths. In
other words, we expect that once higher-resolution large-
scale models become available, we may learn that the old
coarse models overestimate losses even more severely
than what is shown here. Similarly, our study only con-
sidered univariate damage functions. The aggregation
response of multivariate functions would be similarly
sensitive to the spatial variance in the other variables;
however, their interactions would be more complex and
difficult to quantify.

Focusing on errors specific to non-linear aggregation,
our study intentionally excluded other mechanisms that
introduce error into aggregated models. For example, the
magnitude of overestimate we report is likely tempered
by our use of the mean child depth for the aggregate
depth given the “dry bias” hypothesis of exposure (Bryant
et al., 2023). This hypothesis states that, within an aggre-
gate asset, those regions where buildings are present tend
to be less exposed (shallower flood depths) than the aver-
age flood depth across the asset. In other words, a model
using centroid sampling or grid averaging to obtain the
aggregate flood depth will overestimate more severely

FIGURE 5 Relative losses for a single damage function for the sub-domain shown in Figure 3. See Figure 4 for additional explanation

and legend.
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than one using child mean depths like ours. Errors like
this, and the non-linear function aggregation reported
here, compound and interact with more classical model
uncertainties like spatiotemporal transfers and measure-
ment error.

5 | CONCLUSION

This study provides the first demonstration and quantifi-
cation of errors in aggregate flood damage models

resulting from the application of nonlinear damage func-
tions. We show that variance in flood depths, along with
function curvature, leads to discrepancies between the
aggregated and the underlying non-aggregated model.
With our Germany-wide analysis, we find that flood
depth variance increases with the magnitude of both
aggregation and flood hazard. Further, this variance is
spatially heterogeneous, with some local regions exhibit-
ing 1.5–4.0 times more variance in flood depth than the
Germany-wide averages. Computing the error in relative
loss estimates resulting from these variances, we find all

FIGURE 6 Building count weighted relative losses for three grid aggregations and four flood damage functions for the 500-year fluvial

undefended hazard scenario. Totals are shown for losses computed with non-aggregated (RLbldg,j; x-axis) and aggregated (RLgrid,j; y-axis)

depths. Bias as in Figure 4.
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selected damage functions overestimate when applied in
aggregation. The magnitude of this overestimation is
highly dependent on the water depth variances and the
amount of curvature, varying from a bias (aggregate
result/non-aggregate) slightly above 1.00–1.19 when aver-
aged Germany-wide. However, these errors arising from
aggregation are generally less significant than the uncer-
tainty within the damage function itself. Finally, we
extend the analysis to account for heterogeneous asset
density. This shows the same pattern of error but with
most cases yielding a larger overestimate when asset den-
sity is included (bias up to 1.25).

These averaging artifacts were first described by Jen-
sen (1906) and are well known in other fields as Jensen's
gap. This study transfers this knowledge to the flood
damage modeling domain to demonstrate how all dam-
age models applying concave damage functions will over-
estimate when aggregating. Given the prevalence of
aggregation in large-scale models and the use of concave
damage functions, this study provides some explanation
for the overestimation of coarse models reported
elsewhere.

To provide a more consistent evaluation of Jensen's
gap, our study only quantified aggregate model overesti-
mates for residential tangible, direct-damage functions
applied to buildings exposed to fluvial hazards in
Germany. However, considering the magnitude of the
overestimate in this case, and that even higher overesti-
mates are probable in some situations, suggests all mod-
elers employing aggregation should be knowledgeable of
the mechanics of Jensen's gap. For example, modelers
should be aware that increasing curvature and aggregate
depth variance will increase errors. Similarly, this study
demonstrates one mechanism that leads to superior accu-
racy of non-aggregate models over aggregate models. Of
course, this mechanism is only one-way aggregation
introduces error, and these aggregation errors are only
one of many sources of error present in flood damage
models. To better prepare society for flood disasters, more
attention and effort are needed to understand and miti-
gate model errors and biases like the ones reported here.
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